Drug devopment for rare diseases requires significant industry effort

Genetics guides drug development. But what kind of genetics?

Rare to common pivot

Mendelian disorder genes 2.6X more likely to be a drug target

See also King et al. 2019, Plenge et al. 2013

Brivileged & Confidential.

. Heterogenous Population

Rare Disease

Common Disease: Defined Population

A Major Drug Discovery Problem:

Defining a high impact drug target for a common disease with a mixed population has very low probability of success

Actio's Rare Disease First Approach:

Start with a defined population (one gene, one disease) and enhance the understanding and clinical value of drug and target Leverage Rare Disease Paradigm to Inform Drug Development for Common Diseases:

Rare disease genes regulate biological pathways relevant to more common diseases

Mendelian disease genes are enriched drug targets

Epilepsy genes and common indications

Advanced three drug candidates to clinical trials

PRAKIS

Praxis Precision Medicines Announces Closing of Initial Public Offering and Exercise in Full of the Underwriters' Option to Purchase Additional Shares

October 20, 2020 16:05 ET | Source: Praxis Precision Medicines, Inc

CAMBRIDGE, Mass., Oct. 20, 2020 (GLOBE NEWSWIRE) -- Praxis Precision Medicines, Inc. (NASDAQ: PRAX), a clinicalstage biopharmaceutical company translating genetic insights into the development of therapies for central nervous system disorders characterized by neuronal imbalance, today announced the closing of its upsized initial public offering of 11,500,000 shares of common stock, including the exercise in full by the underwriters of their option to purchase up to 1,500,000 additional shares of common stock, at a public offering price of \$19.00 per share.

Approved drug targets are enriched for rare disease genes

 Drugs that target rare disease genes are approved three times more often common diseases

Cancer teaches us we can target Gain of Function mutations

Cancer

5

Validated paradigm with multiple approved therapeutics to inhibit GoF mutations in cancer

Rare Diseases

Therapies targeting GoF mutations are lacking in rare diseases

- Large opportunity for successful drugs targeting GoF mutations in rare diseases
- Proven approach in cancer, greater efficacy expected in rare diseases (lack resistance mechanisms)
- Actio is the first company to focus, and do this systematically for rare diseases

Leveraging Human Genetics for New Target Discovery

Recent expansion of disease genetics & population genetics databases empowers new opportunities to identify drug targets

High proportion of:

Pathogenic missense variants: target for inhibition

- KCNT1 15 missense, 0 LoF, targeted by Praxis Precision Medicine for epilepsy
- LRRK2 10 missense, 1 LoF, targeted by Denali Therapeutics for Parkinson's disease
- RYR2 28 missense, 0 LoF, targeted by flecainide for ventricular tachycardia
- PDE3A -7 missense, 0 LoF, targeted by milrinone for pulmonary hypertension, heart failure

Pathogenic loss-of-function mutations: target for transcriptional restoration

- SCN1A 203 missense, 132 LoF, causal for Dravet syndrome
- LDLR 902 missense, 598 LoF, causal for familial hypercholesterolemia
- **SPAST** 76 missense, 48 LoF, causal for spastic paraplegia

LoF mutation ratio (# LoF variants / # all variants)

Human Genetics-Driven Discovery Engine For Rare Disease Treatments

Challenges to Precision Medicine Paradigm

- Limited application?
- Clinical trials
- Economics

Diagnostic Utility of Exome Sequencing For Kidney Disease

ES of 3,315 individuals with all-cause CKD

91.6% adults 35.6% non-white European ethnicity 66 different singlegene etiologies 59% unique cases

~1 in 10 (9.3%) have

diagnostic findings

In 89% of cases genetic findings inform clinical care

Groopman et al., NEJM 2019

COLUMBIA UNIVERSITY Vagelos College of Physicians and Surgeons IGM Institute for Genomic Medicine

Most Common Genetic Diagnoses

Diagnosis Gene	Proband	Cohort
	Count	
COL4A5	35	CKD
COL4A3	17	CKD
COL4A4	14	CKD
SCN1A	12	Epilepsy, ID/DD/ASD
NF1	10	CKD, Epilepsy, ID/DD/ASD
PKD1	10	CKD
SCN2A	10	Fetal Anomaly, Epilepsy, ID/DD/ASD
NF1	9	Epilepsy, ID/DD/ASD
TRPC6	8	CKD
NSD1	7	Epilepsy, ID/DD/ASD
UMOD	7	CKD
CACNA1A	6	Epilepsy, ID/DD/ASD, Ataxia
EYA1	6	CKD, Fetal
HNF1A	6	CKD
NPHS2	6	CKD
		Fetal Anomaly, Epilepsy, Congenital
COL4A1	5	Anomaly
PAX2	5	CKD
PTPN11	5	CKD, ID/DD/ASD

- Identified a primary result in 568/4890 probands that fully or partially explains phenotype
- Genetic diagnoses were identified across multiple cohorts

Clinical Utility

- Clarify inheritance mode → family counseling, renal transplant donor selection
- Inform disease prognosis (variant type ~ disease severity)
 Workup for extra-renal features
- Targeted treatment
- \rightarrow Early initiation of ACE-I
- \rightarrow Avoid immunosuppression
- \rightarrow Referral for clinical trials

Multiple Hit Genes

No.	Gene	Cohort
10	SCN1A	Neuro + DiagSeq
7	SCN2A	Neuro + DiagSeq
6	NSD1	Neuro + DiagSeq
5	CACNA1A	Neuro + DiagSeq
4	CSNK2B	Neuro + DiagSeq
4	GNB1	Diagseq
4	KMT2A	Diagseq
4	NF1	Diagseq

No.	Gene	Cohort
3	COL4A1	Neuro + DiagSeq
3	DEPDC5	Neuro
3	GNAS	Neuro + DiagSeq
3	KANSL1	Neuro + DiagSeq
3	KCNQ2	Neuro
3	KIF1A	Neuro + DiagSeq
3	SCN8A	Neuro
3	TCF4	Diagseq
2	KIAA2022	Neuro + DiagSeq
2	ANKRD11	Neuro + DiagSeq

• 2 Cases: ANKRD11, ASXL3, ATM, BRAF, COL27A1, CREBBP, GNAO1, GRIN1, KCNQ3, KDM6A, KIAA2022, NHS, PAFAH1B1, PPP2R1A, PRRT2, SON, TAB2

Many Mendelian disease genes are tractable targets with broader application than assumed

A proportion of Mendelian disease genes represent key points for intervention for common diseases

Actio's first target causes a rare neuropathy that includes a key common disease symptom

