Challenges in Developing precision therapeutics

COLUMBIA UNIVERSITY Vagelos College of Physicians and Surgeons IGM Institute for Genomic Medicine

David B. Goldstein, PhD CEO Actio Biosciences

Genetically Stratified Medicine

- Goal is to identify subgroups of patients with similar disease mechanisms and specific responses to medications and treatments
- WES is an important tool in the advancement of genetically stratified medicine
- Relies on widespread sequencing of cohorts of interest and a centralized system for enrollment, sequencing and storage of data

Source: https://www.who.int/medicines/areas/priority_medicines/Ch7_4Stratified.pdf?ua=1

Sequencing for Rare Diseases

Study	Journal	Ν	Ascertainment	% resolved
Need 2012	J Med Genet	12	Mixture	50%
Yang 2013	NEJM	250	80% Neuro	25%
Calvo 2012	Sci Transl Med	42	Mitochondrial	24%
DeLigt 2013	NEJM	100	Severe ID	16%
Zhu 2014	Genetics in Medicine	119	Mixture	24%
Srivastava 2014	Annals of Neuro	78	Neuro	41%
Yang 2014	JAMA	2,000	Mixture	25%
Lee 2014	JAMA	814	Mixture	26%
Soden 2014	Sci Transl Med	119	Neuro	45%
Combined	-	3,534	Mixture	26%

Ten Thousand patients sequenced to date at tertiary care center

Utility of Genomics Throughout the Lifespan

Sequencing Success

- 18-month-old girl with sudden onset opsoclonus, ataxia, and upper extremity weakness
- Unknown etiology, but treated on suspicion of progressive autoimmune condition
- Submitted whole exome sequencing

Pathogenic mutations identified in SLC52A2

Brown-Vialetto-Van Laere Syndrome

Riboflavin transporter deficiency

COLUMBIA UNIVERSITY Vagelos College of Physicians and Surgeons

Brown-Vialetto-Van Laere Syndrome

3 weeks pre-treatment

3 weeks of treatment

2 days of treatment

4 weeks of treatment

Cara Greene

Sequencing Changes Medical Management

Example: 30 year old male with life-long history of developmental issues

Compound Heterozygous for variants in *CYP27A1* Cerebrotendinous Xanthomatosis (CTX)

FDA approved medication, CDCA

COLUMBIA UNIVERSITY Vagelos College of Physicians and Surgeons

Sequencing Often Leads to a Road Block

COLUMBIA UNIVERSITY Vagelos College of Physicians and Surgeons

Modeling single gene diseases

Mouse Model Specific genetic mutation is introduced into the mouse's genome Cellular Model Induced Pluripotent Stem Cells (iPSCs) are used to cultivate a "neural network" of cells for continued testing

Both models are used to repeatedly test the effect of different drug therapies on the mutated gene

Non-convulsive Seizures in *Gnb1*^{K78R} Mice Corrected By Ethosuximide Treatment

Acute treatment with Ethosuximide stops seizure activity in GNB1 mice

Gnb1^{K78R/+} mouse EEG

- Ethosuximide did not appear to help conrols seizures in patients
- Repurposing rarely works well enough
 - Consider quinidine

Ethosuximide corrects the abnormal neuronal activity in the neuronal cell models

Expression dysregulation in NDD

Developmental delay	ACTL6B ADNP AFF2 AFF4 ARID1A ARID1B ARX ASXL1 ATRX AUTS2 BCL11A BRPF1 BRWD3 CC2D1A CDK8	CHD2 CHD4 CHD7 CREBBP CTCF CTDP1 DDX3X DEAF1 DMMT3A DMMT3A EBF3 EHMT1 EP300 EZH2 FMR1	FOXG1 FOXP1 FOXP3 GATAD2B GL12 GL12 GTF2H5 HCFC1 HDAC4 HDAC4 HNRNPK HNRNPK HNRNPK HNRNPK HNRNPK HNRNPL HOXA1 KANSL1	KA T6A KA T6B KDM5C KDM5C KMT2A KMT2D KMT2E KMT5B LARP7 MAF MECP2 MEF2C MEF2C MSL3 MYCN	NACC1 NFIX NKX2-1 NR2F1 OTX2 PAX6 PAX8 PCGF2 PHF6 PHF8 PHOX2B POGZ POLR2A	POLR3A POLR3B POU3F3 PQBP1 PRMT7 PTF1A PURA RAI1 RARB RAX RERE SATB2 SETBP1 SETD5	SIM1 SIX3 SKI SMARCA2 SMARCB1 SNRPB SON SOX2 SOX3 SCAP SUZ12 TAF1 TBL1XR1	TBX1 TCF20 TCF4 TGIF1 THOC6 THRA TWIST1 UPF3B WAC YY1 ZBTB20 ZEB2 ZIC2 ZNF711
Autism spectrum disorder	ADNP AFF2 ARID1B ARID2 ARX ASH1L ASXL3 ATRX AUTS2 BAZ2B BCL11A	CHD1 CHD2 CHD3 CHD7 CHD8 CIC CN0T3 CREBBP CSDE1 CSDE1 CTCF CUX2	DDX3X DEAF1 DNMT3A EBF3 EHMT1 EP300 FMR1 FOXF1 FOXF1 HDAC4 HNRNPH2	HNRNPU KANSL1 KAT6A KDM3B KDM6B KMT2A KMT2C KMT2C KMT2E KMT5B LZTR1	MBD5 MECP2 MED12L MED13 MED13L MEF2C MEIS2 MYT1L NACC1 NFIB	NR2F1 NR3C2 NR4A2 NSD1 PHF21A POGZ RAI1 RERE RFX3 RORB	SATB2 SETBP1 SETD1B SETD2 SETD5 SIN3A SMARCC2 SON SOX5 SRCAP	TBR1 TCF20 TCF4 TRRAP TSH23 UPF3B WAC ZBTB20 ZNF292 ZNF292 ZNF462
Epileptic encephalopathy		ARID1B ARX	ASXL3 CHD2	FOXG1 HNRNPU	MBD5 MECP2	MEF2C PURA	ZEB2	
Schizophrenia				SETD1A	SP4			

Modelling Human HNRNPU Dysregulation in Cortical Organoids

Impaired Growth in HNRNPU Cortical Organoids

Wild-type and Mutant organoids generate significant neuronal populations in ~1.5 months

D42-D45 Organoid Size

HNRNPU^{+/-} Clone 1 (D11) – Day 42

HNRNPU Drug Discovery Using Gene Expression Profiling

Drug devopment for rare diseases requires significant industry effort

