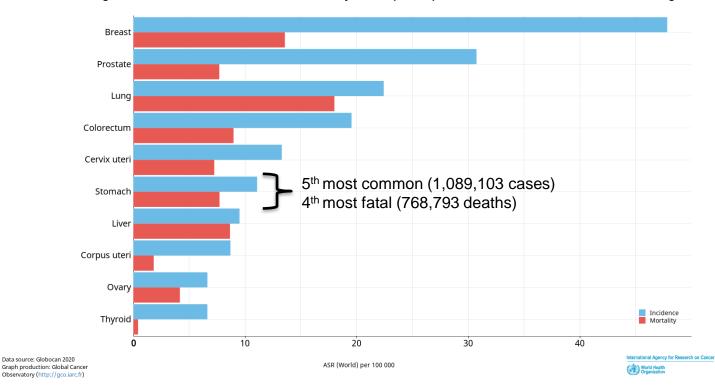


Genome-wide-association studies and polygenic risk scores in gastric cancer

Constanza Camargo, PhD

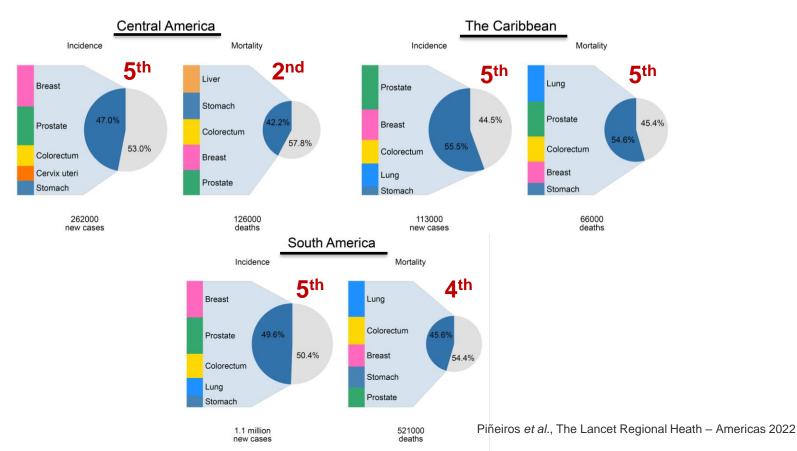
Earl Stadtman Investigator Division of Cancer Epidemiology and Genetics



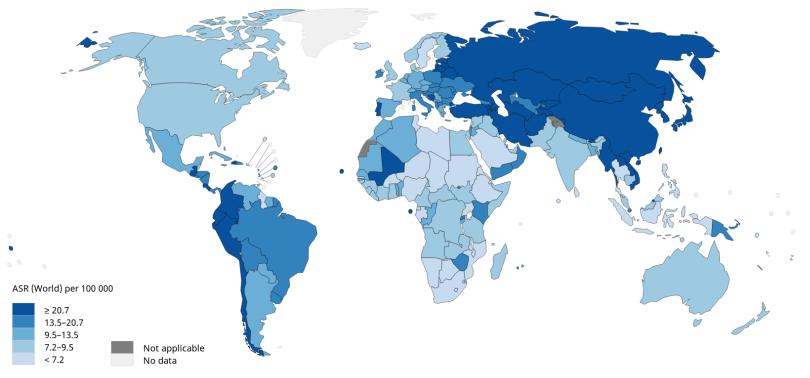
June 15, 2023

Outline

- Gastric cancer epidemiology
- Genome-wide-association studies
- Polygenic risk scores


Gastric Cancer Incidence and Mortality Worldwide

Estimated age-standardized incidence and mortality rates (World) in 2020, worldwide, both sexes, all ages


Sung et al., CA Cancer J Clin 2021

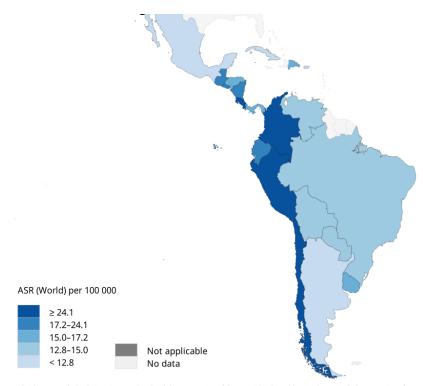
Five most frequent cancers in Latin America and the Caribbean by subregions, both sexes, incidence and mortality, 2020

Gastric Cancer Incidence

Estimated age-standardized incidence rates (World) in 2020, stomach, both sexes, ages 25+

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2020 Graph production: IARC (http://gco.iarc.fr/today) World Health Organization

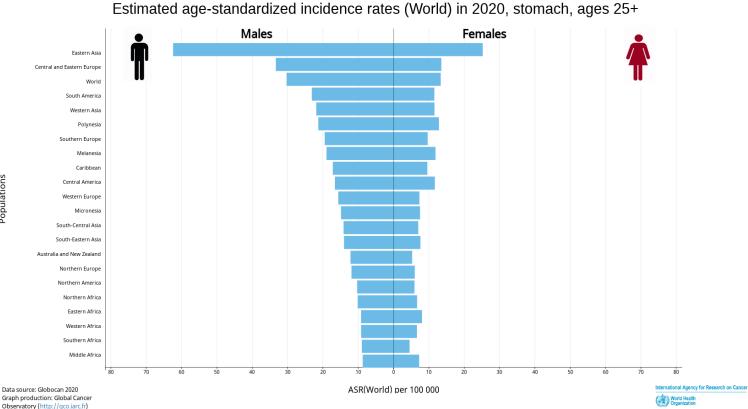

The proportion of the Latin-American population covered by the existing cancer registries in the region is \sim 20%, with high-quality information coverage estimated at 7.1%

Latin America Hub

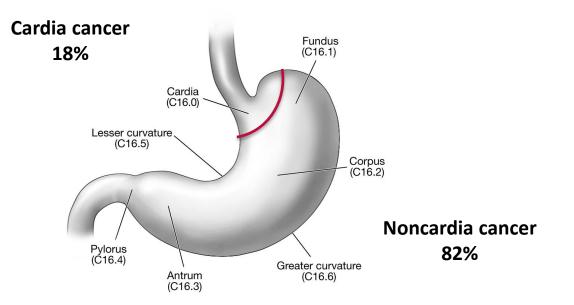
Piñeros et al., Rev Panam Salud Publica 2017

Estimated age-standardized incidence rates (World) of gastric cancer in 2020, both sexes, ages 25+

Population	ASR(W)
Peru	29.2
Chile	25.1
Colombia	24.6
Costa Rica	24.5
Ecuador	24.0
Guatemala	23.3
Nicaragua	19.8
El Salvador	17.5
Panama	17.0
Honduras	15.8
Uruguay	15.4
Dominican Republic	15.1
Bolivia, Plurinational State of	14.9
Brazil	13.6
Paraguay	13.2
Venezuela, Bolivarian Republic of	13.0
Argentina	12.1
Mexico	11.9
Cuba	10.0
Puerto Rico	4.8


All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2020 Map production: IARC (http://gco.iarc.fr/today) World Health Organization


© International Agency for Research on Cancer 2020 All rights reserved

Global Pattern of Male Predominance in Gastric Cancer, 2020

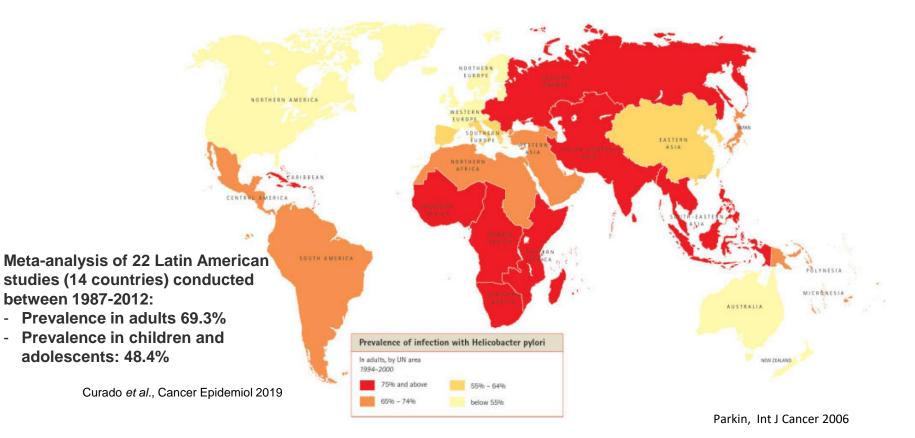
Populations

Anatomical subsites of gastric cancer

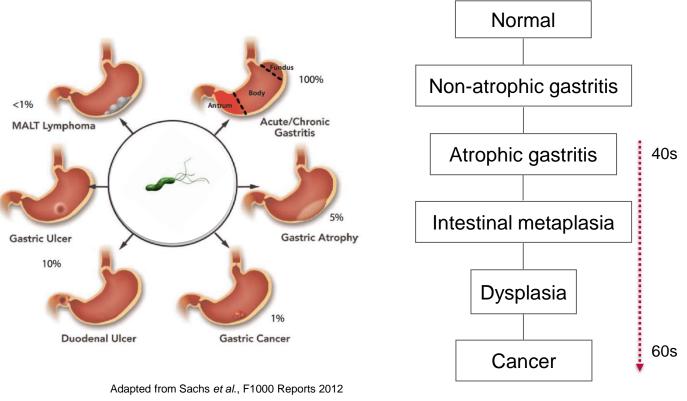
Risk factors for gastric cancer by anatomical subsite

Level of evidence	Risk factor	Noncardia	Cardia	
	Chronic <i>H. pylori</i> infection ^{1, 2}	^	↓ ↑ (E)	
Convincing	Smoking ³	↑	•	
	High consumption of fruits and vegetables ⁴⁻⁶	↓	•	
	Excessive salt/salty food consumption ^{7,8}	^	♠	
	High consumption of processed meat ⁹	^	♠	
	Excess weight ^{6,10}	Null	♠	
Probable	Reflux ¹¹	?	♠	
	Epstein-Barr virus infection ¹²	^	•	
	High consumption of alcohol ^{6,13}	^	♠	
	Autoimmunity ¹⁴	^	?	
	Type II diabetes ¹⁵	^	▲	
	Estrogens ¹⁶	¥	?	
Suggestive	Some genetic variants ¹⁷⁻²⁰	^	•	

E= endemic areas

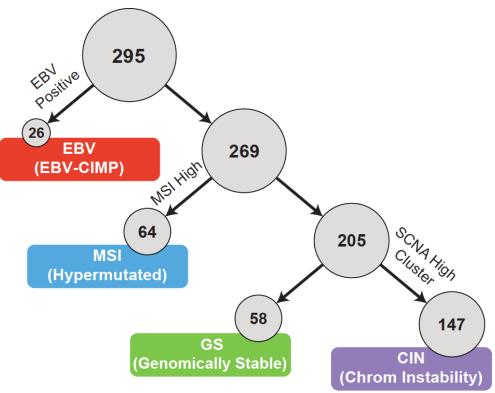

¹Helicobacter and Cancer Collaborative Group, Gut 2001; ²de Martel, Lancet Glob Health 2020; ³Ladeiras-Lopez, Cancer Causes Control 2008; ⁴Lunet, Eur J Cancer Prev 2007; ⁵Lunet, Nutr Cancer 2005; ⁶WCRF/AICR, 2016; ⁷Tsugane, Gastric Cancer 2007; ⁸D'Elia, Clin Nutr 2012; ⁹Larsson, JNCI 2006; ¹⁰Yang, Eur J Cancer 2009; ¹¹Forman, Aliment Pharmacol Ther 2004; ¹²Murphy, Gastroenterol 2009; ¹³Han, Oncotarget 2017; ¹⁴Song, Cancer Res Treat 2019; ¹⁵Ohkuma, Diabetologia 2018; ¹⁶Camargo, CEBP 2012; ¹⁷Gonzalez, Int J Cancer 2002; ¹⁸Abnet, Nat Genet 2010; ¹⁹Wang, Gut 2015; ²⁰Mocellin, Gut 2015.

H. pylori was responsible for ~800,000 new gastric cancer cases in 2018

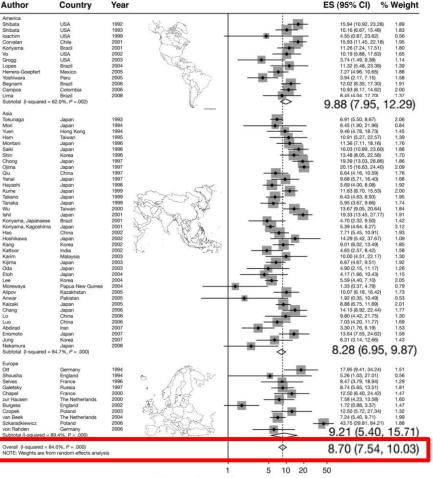

	Total	
	New cases	New cases attributable to infectious pathogens
Helicobacter pylori		
Non-cardia gastric cancer	850 000	760 000 90%
Cardia gastric cancer	180 000	36000 20%
Non-Hodgkin lymphoma of gastric location	22 000	16000 72%

de Martel et al., Lancet Glob Health 2020

Prevalence of *H. pylori* infection in adults, 1994-2000



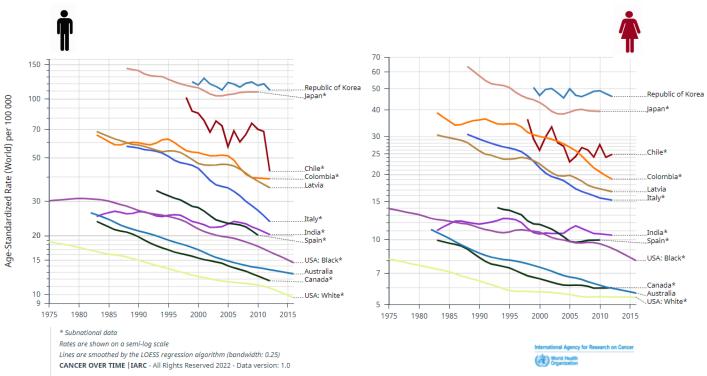
Model of noncardia gastric carcinogenesis


Correa et al. Lancet 1975

Molecular classification of gastric adenocarcinoma The Cancer Genome Atlas

TCGA Analysis Working Group, Nature 2014

EBV prevalence in gastric tumors


Percent prevalence

Tumor EBV prevalence in Latin American populations

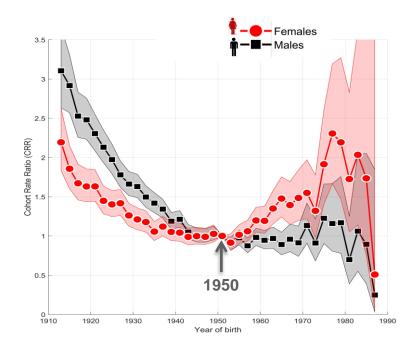
Country	Population	Ν	%
Brazil	Sao Paulo (non-Japanese-Brazilians) ¹		11
	Sao Paulo ²	53	11
	Sao Paulo ³	103	12
	Fortaleza ⁴	100	8
Chile	Santiago ⁵	185	17
Colombia	Cali ⁶	178	13
	Cali y Bogota ⁷	368	11
	Ibague (unpublished)	73	14
Costa Rica	Cartago (unpublished)	99	22
México	Ciudad de México ⁸	330	7
	Ciudad de México y Merida9	75	11
Perú	Lima ¹⁰	254	4

¹Koriyama *et al.*, 2001; ²Lopes *et al.*, 2004; ³Begnami*et al.*, 2006; ⁴Lima *et al.*,2008; ⁵Corvalan *et al.*, 2001; ⁶Carrascal *et al.*,2003; ⁷Campos *et al.*, 2006; ⁸Herrera-Goepfert *et al.*, 2005; ⁹Martínez-López *et al.*, 2014; ¹⁰Yoshiwara *et al.*, 2005

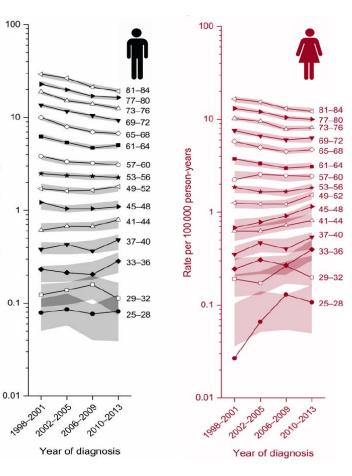
Trends in incidence of gastric cancer in selected countries

Impact of sanitation, refrigeration and widespread use of antibiotics

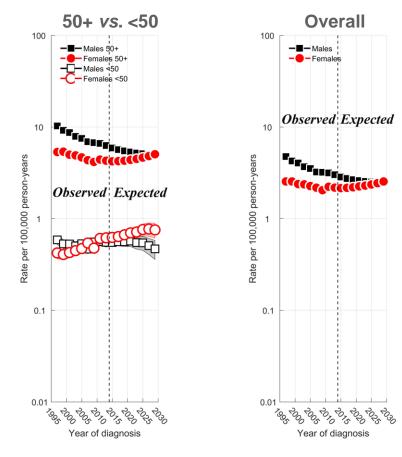
JNCI J Natl Cancer Inst (2018) 110(6): djx262


Rate per 100 000 person-years

doi: 10.1093/jnci/djx262 Article


ARTICLE

The Changing Face of Noncardia Gastric Cancer Incidence Among US Non-Hispanic Whites


William F. Anderson, Charles S. Rabkin, Natalie Turner, Joseph F. Fraumeni Jr., Philip S. Rosenberg, M. Constanza Camargo

NAACCR, 1995-2013

Observed and Expected Age-standardized Incidence of Noncardia Gastric Cancer among non-Hispanic Whites

Noncardia Gastric Cancer Increasing in Hispanic whites, but not in Blacks or Other Races (mainly Asians)

Hispanics all races							
	<50 years	50+ years					
	EAPC	EAPC					
Male	0.15	-2.58*					
Female	0.73*	-1.95*					
non-Hispanic Blacks							
	<50 years	50+ years					
Male	-2.36*	-1.88*					
Female	0.51 -1.69*						
non-H	non-Hispanic others						
	<50 years	50+ years					
Male	-2.72*	-2.94*					
Female -0.41 -2.96*							

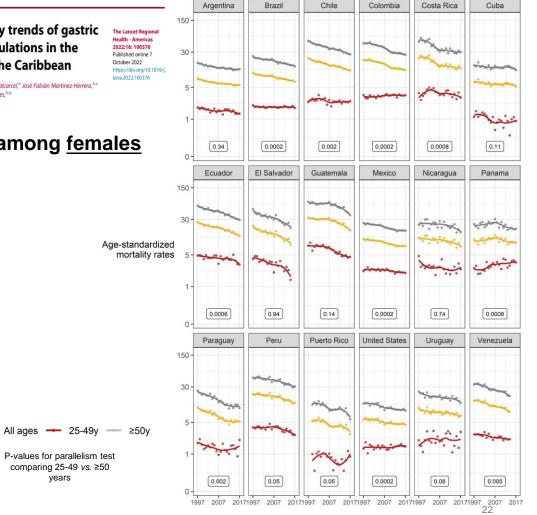
*Statistically significant EAPC at the *p*<0.05 level

Rising noncardia gastric cancer rates mainly restricted to counties <20% prevalence of poverty

% Poverty		<50 years	50+ years
		EAPC	EAPC
<10	Male	0.56	-3.28*
	Female	3.93*	-2.14*
10 - 19.9	Male	0.36	-3.12*
	Female	1.57*	-2.22*
20+	Male	-2.65	-3.16*
	Female	2.33	-1.74*

*Statistically significant EAPC at the *p*<0.05 level

Anderson et al., JNCI 2018


Sex and age differences in mortality trends of gastric cancer among Hispanic/Latino populations in the United States, Latin America, and the Caribbean

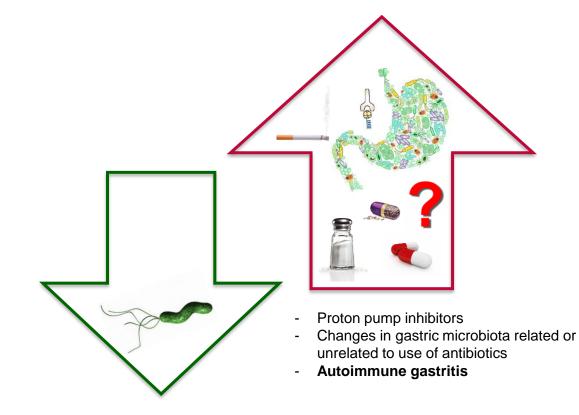
The Lancet Regional Health - Americas 2022:16: 100376 Published online 7 October 2022 lana.2022.100376

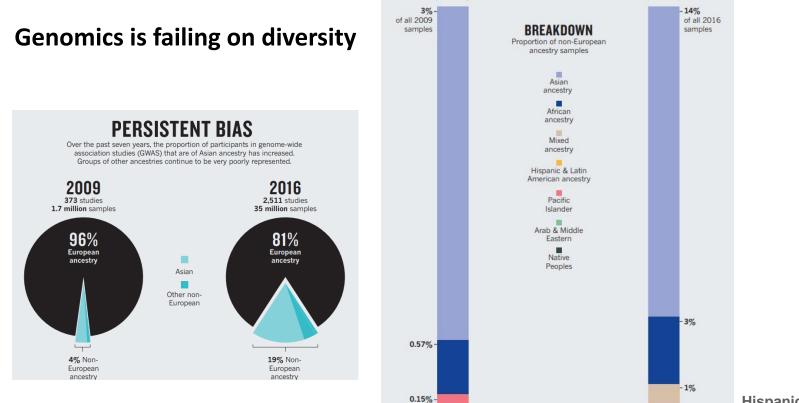
J. Smith Torres-Roman, abs Christian S. Alvarez, Pedro Guerra-Canchari, bd Bryan Valcarcel, b José Fabián Martinez-Herrera, be Carlos A. Dávila-Hernández,^f Camila Alves Santos,^{b,g} Samara Carollyne Mafra Soares,^{b,g} Dyego Leandro Bezerra de Souza,^{b,g,h} and M. Constanza Camargo

Mortality trends among females

years

Years


Sex and age differences in mortality trends of gastric cancer among Hispanic/Latino populations in the United States, Latin America, and the Caribbean


The Lancet Regional Health - Americas 2022;16:100376 Published online 7 October 2022 https://doi.org/10.1016/j. lana.2022.100376

J. Smith Torres-Roman,¹⁰⁺ Christian S. Aharez,² Pedro Guerra-Canchast^{1,0+} Byan Valcarcel,⁹ José Fabián Martinez-Herrera,¹ Carlos A. Dávila-Hernández,² Camila Alves Santos,¹⁰⁺ Samara Carollyne Mafra Soares,¹⁰⁺ Dyego Leandro Beerra de Souza.^{10,10} and M. Constanza Camargo⁵

Mortality trends among females United States Brazil Panama 150 -30 5 1 All ages 🗕 25-49y — ≥50y ----0.0002 0.0008 0.0002 P-values for parallelism test ſ comparing 25-49 vs. ≥50 years 20171997 1997 2007 2017 1997 2007 2007 2017

Potential Changes in the Etiologic Fractions of Major and Potential Risk Factors

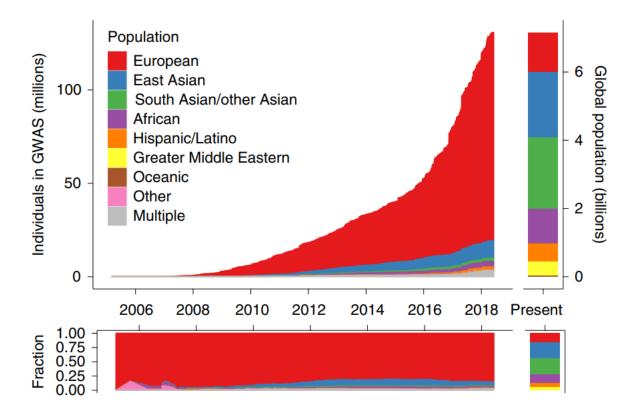
0.06%-

0.06%

Hispanics/Latinos: 0.5%

Terms for ethnicity are those used in the GWAS Catalog. Some have changed between 2009 and 2016 as sampling has increased. Samples of European origin have the most specific descriptions of population ancestry.

0.54%


0.08%

-0.28%

工0.05%

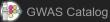
Popejoy and Fullerton, Nature 2016

Ancestry of GWAS participants over time -- compared with the global population

Martin et al., Nat Genet 2019

Heritability of Gastric Cancer

Proportion of variation among individuals that can be attributed to genes


Nordic populations

- Lichtenstein et al.: 28%
- Mucci et al.: 22%

East Asian populations

- Dai et al.: 20%
- Sampson et al.: 25%

Lichtenstein et al., NEJM 2000; Sampson et al., JNCI 2015; Mucci et al., JAMA 2016; Dai et al., IJC 2017

About

GLOBAL CORE BIODATA

RESOURCI

Q

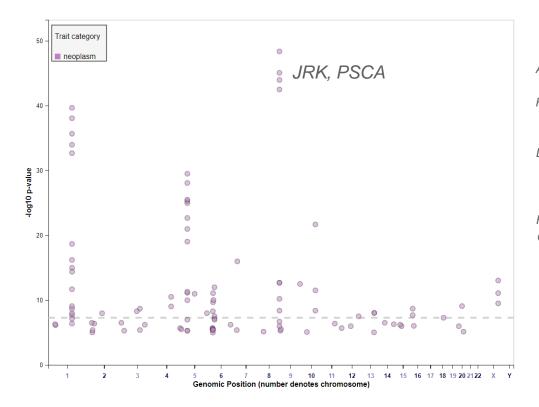
GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies

gastric cancer

Examples: breast carcinoma, rs7329174, Yao, 2q37.1, HBS1L, 6:16000000-25000000

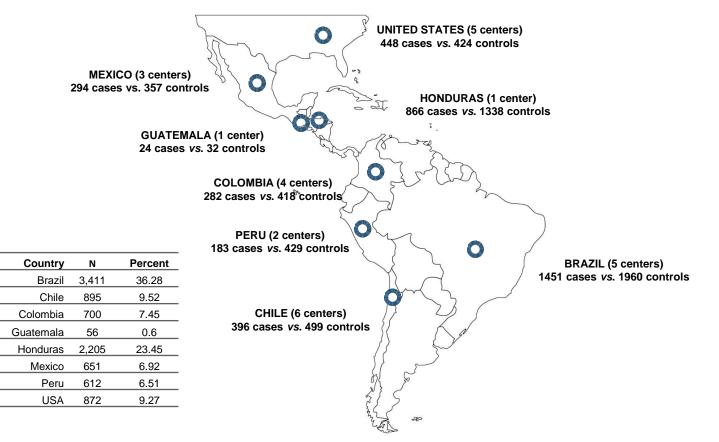
GWAS / Search / gastric cancer


Search results for gastric cancer

Gastric Cancer GWAS in the East Asian and European populations

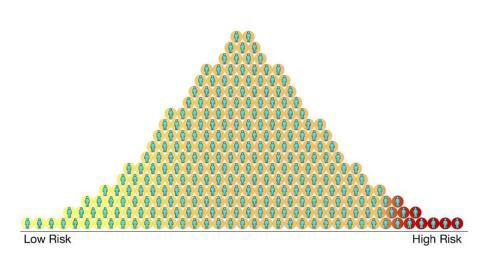
First author	Population	Publication year	_
Abnet	East Asian	2010	_
Shi	East Asian	2011	Total No. cases: ~48,000
Helgason	European	2015	
Park	East Asian	2018	
Tanikawa	East Asian	2018	
Yan	East Asian	2019	
Ishigaki	East Asian	2020	
Rashkin	European	2020	
Jin	East Asian	2020	
Sakaue	European and East Asian	2021	
Nam	East Asian	2022	
Hess and Maj	European	2023	_

GWAS hits across all studies



ABO, ACYP2, ARC, MROH4P, ARL4C, ASH1L, BDKRB1, ATG2B, C7, CCDC32, CHST14, CHD6, CUX2, DEFB121, DNAH11, ECRG4,
FAM183A, GAPDHP77, RNU6-309P, GBAP1, GON4L, HLA-C, HLA-F, HLA-U, HLA-A, ILF2P2, BRMS1L, JRK, KCNU1, KRTCAP2, LINC01068, LINC02161, LINC02363, MYL12BP2, LINC02516,
LINC02580, LMNA, LRFN2, LRIG3, LINC02388, MAS1LP1, MAST2, MICA, HLA-S, MIR4457, TERT, MLN, LINC01016, MTX1; THBS3; MUC1, NPIPB2, NPM1P28, OARD1, UNC5CL, OPCML, PLCE1, PPP1R10, PRKAA1, PSCA, LY6K, PTGER4, TTC33, PTMAP5,
HIGD1AP2, RANBP6, RMDN2, RNMTL1P2, PRPS1L1, RNU6-309P,
GAPDHP77, RPL3P2, WASF5P, SIGLEC15, SMARCA2, SMIM15P2, PGBD1, SMIM23, FGF18, SNAP25-AS1, TACC1P1, TATDN2,

THBS3, MTX1, THBS3-AS1, TRPM1, TTC33, U6, UNC5CL, VN1R10P, ZNF204P, VPS35L, ZBTB20, ZNF603P, ZNF192P1


GWAS Catalog – June 2023

GWAS in Hispanic/Latino populations: 3,944 cases and 5,457 controls

Polygenic risk score (PRS)

- A PRS aggregates the effects of many genetic variants into a single number which predicts genetic predisposition for a phenotype
- PRS are typically composed of hundreds-to-millions of variants which are combined using a weighted sum of allele dosages multiplied by their corresponding effect sizes, as estimated from a relevant GWAS

https://www.cdc.gov/genomics/disease/polygenic.htm

Health Care and Public Health Implications

- PRS can provide a measure of disease risk due to your genes
- Combining PRS with other risk factors can give a better idea of how likely someone is to get a specific disease than considering either alone
- Knowing how likely someone is to get a disease can help you take steps to prevent a disease or find it earlier
- PRS can also be combined with other factors to help predict how a disease will progress and how well you will respond to a treatment

https://www.cdc.gov/genomics/disease/polygenic.htm

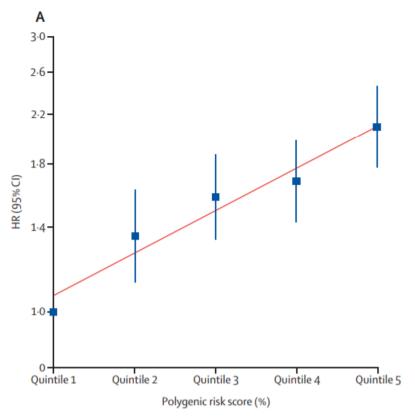
The Polygenic Score (PGS) Catalog

An open database of polygenic scores and the relevant metadata required for accurate application and evaluation.

Explore the Data

Polygenic ScoresTraitsPublications又 3,6641010

Development of the PGS Catalog is supported by:



272 UK Biobank cases

				PRS, Mean ± SI	D		
	N	umber of SNPs	Number of loci	Cases	Noncases	P value AUC (9	5% Cls)
	3	}	3	0.82 ± 0.24	0.78 ± 0.24	.01 0.56 (0.	53-0.60)
Cancer		Q1 (low)	Q2	Q3	Q4	Q5	P ti
Gastric							
Numbe	er of cases	42	44	74	52	60	
HR (95	% CI)	1.00 (Refere	nce) 1.21 (0.79-1	.84) 1.60 (1.	10-2.34) 1.40 (0	0.93-2.10) 1.75 (2	1.18-2.59)
	PRS	groups					
	Тор 5%		Top 1%	I	Bottom 5%		
1.27 (0.75		(0.75-2.15) ^a	1.27 (0.75-2.1	5) ^b ().82 (0.47-1.43) ^c	0.53 (0.07-3	3.83) ^d

Polygenic Risk Score in Chinese individuals (n=112 SNPs; p<5×10⁻⁵)

GWAS: 10,254 cancer and 10,914 controls

Effectiveness within Kadoorie Biobank (n=100,220)

 692 gastric cancer cases during a median follow-up of 10.4 years

Jin et al., Lancet Oncology 2020

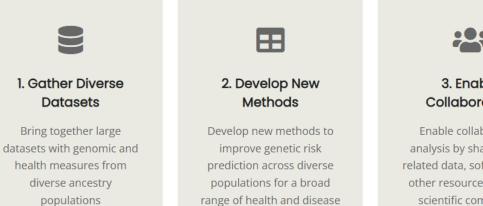
	Number of cases/ person-years	Hazard ratio (95% CI)	p value	p _{trend} value	Absolute risk over 10 years (95% CI)	Absolute risk reduction over 10 years (95% CI)	Number of participants who needed to adhere to a healthy lifestyle*
Low genetic risk				0.0051			
Unfavourable lifestyle	33/34 206	1 (ref)	••		1.00% (0.65–1.34)	O (ref)	
Intermediate lifestyle	50/135331	0.52 (0.31-0.88)	0.014		0.38% (0.27-0.49)	0.62% (0.26-0.97)	162
Favourable lifestyle	5/28 465	0.30 (0.11-0.84)	0.022		0·18% (0·02–0·34)	0.82% (0.45-1.19)	122
Intermediate genetic risk				0.00013			••
Unfavourable lifestyle	138/105718	1 (ref)			1.33% (1.11-1.56)	0 (ref)	
Intermediate lifestyle	243/403912	0.64 (0.51-0.83)	0.00027		0·61% (0·53–0·69)	0.72% (0.50-0.97)	139
Favourable lifestyle	32/82 545	0.51 (0.33-0.78)	0.0019		0·39% (0·26–0·53)	0.94% (0.69-1.22)	106
High genetic risk				0.027			
Unfavourable lifestyle	61/35 662	1 (ref)			1.62% (1.20-2.03)	0 (ref)	
Intermediate lifestyle	115/133277	0.73 (0.52-1.03)	0.076		0.81% (0.66-0.97)	0.81% (0.36-1.19)	124
Favourable lifestyle	15/28468	0.53 (0.29–0.99)	0.048		0.49% (0.24-0.74)	1.12% (0.62–1.56)	89

ref=reference. *Refers to the number needed to adhere to a healthy lifestyle to prevent one gastric cancer case in 10 years.

Table 2: Risk of incident gastric cancer according to lifestyle and level of genetic risk

Defined as not smoking, never consuming alcohol, the low consumption of preserved foods, and the frequent intake of fresh fruits and vegetables. No significant interaction between genetic risk and lifestyle factors was observed (p=0.45).

The Polygenic RIsk MEthods in Diverse populations (PRIMED) Consortium is working to improve the methods and application of polygenic risk scores (PRS) in diverse populations. The consortium has two overarching goals:


- Improve the applicability of PRS in diverse populations.
- Optimize the integration of large-scale, harmonized genomic and phenotype data.

PRIMED Consortium

Polygenic Risk Methods in Diverse Populations

Read about us

The PRIMED Consortium has the following goals:

3. Enable Collaboration

Enable collaborative analysis by sharing PRSrelated data, software, and other resources with the scientific community

outcomes

4. Improve Health

Leverage existing precision medicine partner programs to develop, test, and refine PRS in diverse populations to improve health outcomes

Take home messages

- Additional GWAS are needed to identify risk variants to improve their PRS for risk prediction, especially by reflecting the ancestry and subtype (location, histology, molecular) of cancer
- Evaluation of the risk reduction benefit of *H. pylori* eradication in populations with different levels of genetic risk could be useful for an individualized primary gastric cancer prevention approach
- It is unknown whether individuals at a high genetic risk of gastric cancer would benefit more from endoscopic screening than those with a low genetic risk, which could ultimately improve secondary prevention

Key Collaborators

U.S. National Institutes of Health

 Jeremy Davis, Mike Dean, Philip Taylor, Jiyeon Choi, Belynda Hicks, Aurelie Vogt, Amy Hutchinson, Paula Hyland, Leonardo Marino-Ramirez, Shengchao Li, Oscar Florez-Vargas, Haoyu Zhang, Dayne Okuhara, Bryan Gorman, Stephen Chanock, Meredith Yeager, Kai Yu, Christian Abnet

GWAS in Hispanic/Latino populations

- <u>USA</u>: Douglas Morgan, Manal Hassan, Robert Gilman, Christopher Haiman, Matthew Porembka, Michael Scheurer, Benjamin Musher, Sam Wang, King Jordan, Jovanny Zabaleta
- Mexico: Lizbeth Lopez-Carrillo, Josefina Sánchez, Erika Ruiz, Roberto Herrera-Goepfert
- <u>Guatemala</u>: Roberto Orozco
- Honduras: Ricardo Dominguez
- <u>Brazil</u>: Rui M. Reis, Paulo Assumpcao, Emmanuel Dias-Neto, Maria Aparecida Azevedo Koike Folgueira, Wagner Santos Magalhães, Maria Lucia Hirata Katayama, Thais F. Bartelli, Eduardo Tarazona
- <u>Colombia</u>: Carolina Wiesner, Alicia Cook, Luz Helena Hernandez, Gloria Sanchez, Antonio Huertas
- Peru: Carlos Castaneda, Miluska Castillo, Billie Velapatiño
- <u>Chile</u>: Patricio Gonzalez, Alejandro Corvalan, Alicia Colombo, Arnoldo Riquelme, Luis Quinones, Juan Carlos Roa, Gonzalo De Toro, Michel Baro, Nelson Varela, Javiera Torres

Train at the Division of Cancer Epidemiology and Genetics

Fellowships in Epidemiology / Genetics / Biostatistics

www.cancer.gov

www.dceg.cancer.gov

XVII Congreso Colombiano y XI Congreso Internacional de Genética Humana

Avances en la genética y sus aplicaciones en la era de las ómicas Junio 14 al 16 de 2023 Fórum UPB Medellin - Colombia

Gracias

Organizan:

R

